MPI: 25 Years of Progress

Anthony Skjellum

University of Tennessee at Chattanooga

Tony-skjellum@utc.edu

Formerly: LLNL, MSU, MPI Software Technology, Verari/Verarisoft, UAB, and Auburn University

Co-authors: Ron Brightwell, Sandia Rossen Dimitrov, Intralinks

MPI: 25 Years of Progress

Anthony Skjellum

University of Tennessee at Chattanooga

Tony-skjellum@utc.edu

Formerly: LLNL, MSU, MPI Software Technology, Verari/Verarisoft, UAB, and Auburn University

Co-authors: Ron Brightwell, Sandia Rossen Dimitrov, Intralinks

Outline

- Background
- Legacy
- About Progress
- MPI Taxonomy
- A glimpse at the past
- A look toward the future

Progress

- 25 years we as a community set out to standardize parallel programming
- It worked ©
- Amazing "collective operation" (hmm.. still not complete)
- Some things about the other progress too, moving data independently of user calls to MPI…

Community

This was close to the beginning…

The First CRPC Workshop on Standards for Message Passing in a Distributed Memory Environment Williamsburg, Virginia, April 29-30, 1992

Anthony Skjellum
Lawrence Livermore National Lab

As we all know (agree?)

- MPI defined progress as a "weak" requirement
- MPI implementations don't have to move the data independently of when MPI is called
- Implementations can do so
- There is no need for an internally concurrent schedule to comply
- For instance: do all the data movement at "Waitall" ··· predictable if required only to be here!

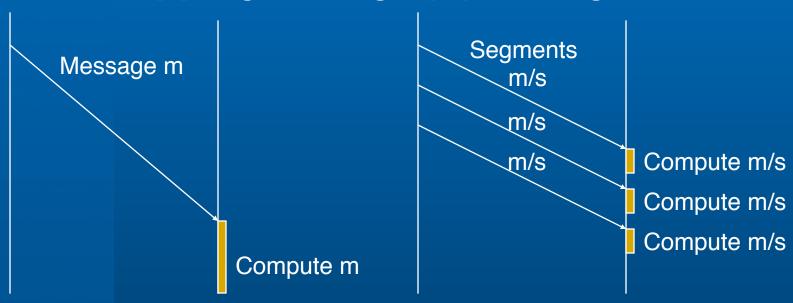
How programs/programmers achieve progress

- The MPI library calls the progress engine when you call any of most MPI calls
- The MPI library does it for you
 - In the transport, MPI just shepherds lightly
 - In an internal thread or threads periodically scheduled
- You kick the progress engine (Self help)
 - You call MPI_Test() sporadically in your user thread
 - You schedule and call MPI_Test() in a helper thread

Desirements

- Overlap communication and Computation
- Predictability / low jitter

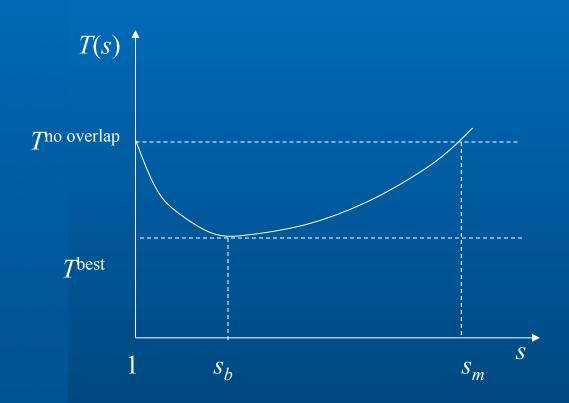
- Later: overlap of communication, computation, and I/O
- Proviso: LJ → Must have the memory bandwidth


MPI Implementation Taxonomy (Dimitrov)

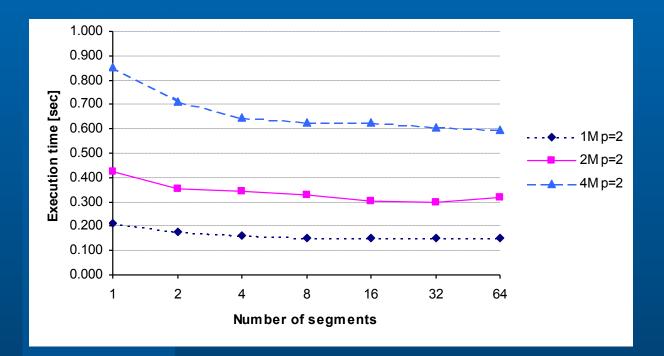
- Message completion notification
 - Asynchronous (blocking)
 - Synchronous (polling)
- Message progress
 - Asynchronous (independent)
 - Synchronous (polling)

blocking	blocking
independent	polling
polling independent	all-polling

Segmentation

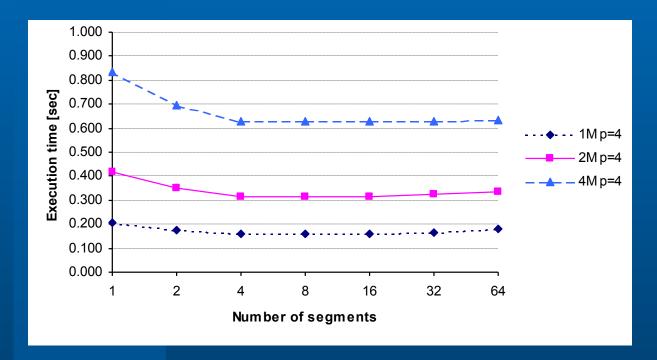

 Common technique for implementing overlapping through pipelining

Entire message


Segmented message

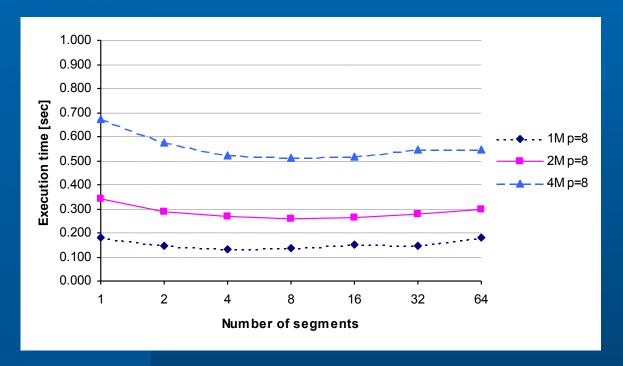
Optimal Segmentation

Performance Gain from Overlapping


 Effect of overlapping on FFT global phase in seconds, p = 2

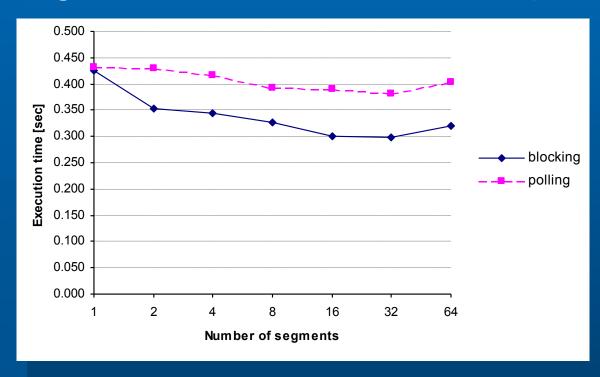
size	Max speedup
1M	1.41
2M	1.43
4M	1.43

Performance Gain from Overlapping (cont.)

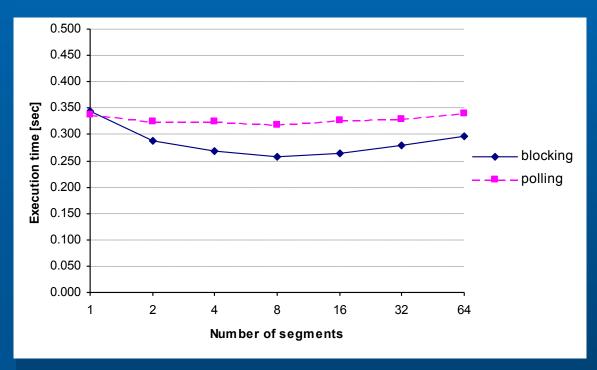

 Effect of overlapping on FFT global phase in seconds, p = 4

size	Max speedup
1M	1.31
2M	1.32
4M	1.33

Performance Gain from Overlapping (cont.)


 Effect of overlapping on FFT global phase in seconds, p = 8

size	Max speedup
1M	1.32
2M	1.32
4M	1.33


Effect of Message-Passing Library on Overlapping

 Comparison between blocking and polling modes of MPI, n = 2M, p = 2

Effect of Message-Passing Library on Overlapping

 Comparison between blocking and polling modes of MPI, n = 2M, p = 8

Observations/Upshots

- Completion notification method affects latency of short messages (i.e., < 4k on legacy system)
- Notification method did not affect bandwidth of long messages
- Short message programs
 - Strong progress, polling notification
- Long message programs
 - Strong progress, blocking notification

Future (soon?)

- MPI's support overlap and notification mode well
- Overlap is worth at most a factor of 2 (3 if you include I/O)
- It is valuable in real algorithmic situations
- Arguably growing in value at exascale
- We need to reveal this capability broadly without the "Self help" model

Thank you

- 25 years of progress
- And still going strong…
- Collective!
- Nonblocking?
- Persistent!
- Fault Tolerant?

